تحلیل فضایی تغییرات مسافران حمل‌ونقل عمومی (اتوبوس‌‌‌های درون‏شهری) در دوران پاندمی‏کرونا در شهر مشهد

نوع مقاله : مقاله استخراج از رساله و پایان نامه

نویسندگان

1 دانشجوی کارشناسی ارشد جغرافیا و برنامه‌ریزی شهری دانشگاه فردوسی، مشهد، ایران

2 استادیار جغرافیا و برنامه‌ریزی شهری دانشگاه فردوسی، مشهد، ایران.

3 استاد جغرافیا و برنامه‌ریزی شهری دانشگاه فردوسی، مشهد، ایران

10.22080/usfs.2022.23542.2258

چکیده

حمل‏ونقل ‏عمومی‏ از محور‌‌های مهم متأثر از پاندمی‏کرونا است. بر این ‏اساس مطالعۀ حاضر به دنبال آن است تا تحلیلی جامع از تغییرات مسافران اتوبوس‌‌‌های شهری در دوران‏ کرونا در شهر مشهد ارائه کند و نشان دهد که بالاترین شدت تغییرات در کجاست، چگونه است و چه عواملی در ارتباط با آن قابل شناسایی است. روش مطالعه توصیفی-تحلیلی، متغیر‌‌های تحقیق شامل 22 متغیر از ویژگی‌‌‌های‏ اجتماعی (۸متغیر)، اقتصادی (10متغیر) و کالبدی (4متغیر) و مقیاس مطالعه نیز شامل ۳۶۰۰ ایستگاه اتوبوس‏ درون‏شهری‏ در ۱۲۰۰حوزۀ آماری شهر مشهد است. بازۀ زمانی شامل داده‌‌‌های سازمان  اتوبوس‌رانی در قبل‏ از کرونا (زمستان1397 تا زمستان1398) و بعد از کرونا (اسفند1398تا شهریور1400) است. تکنیک‌‌‌های مورد‌استفاده شامل 1)روش‌‌های آمار کلاسیک همچون "تی‏زوجی"، "همبستگی" و "رگرسیون" و 2)روش‌‌های تحلیل فضایی نظیر"درونیابی" و "خودهمبستگی فضایی دو طرفه موران"است. نتایج، حاکی از تفاوتِ معنادار در تغییراتِ تعدادِ مسافران در پهنۀ فضایی شهر مشهد است. به‌گونه‌ای که در16.5% از ایستگاه‌‌ها (602ایستگاه)، تعداد مسافران پس از کرونا با افزایش معنادار و در83.5% با کاهش همراه بوده‌است. ارزیابی متغیر‌ها حاکی از ارتباط معکوس تغییرات تعداد مسافران ایستگاه‌ها با متغیر‌‌های سطح ‏تحصیلات ‏بالا و تعداد سالمندان (درویژگی‌‌های اجتماعی)، مالکیت مسکن، میانگین درآمد، مالکیت خودرو و شاغلین زن (در ویژگی‌‌های اقتصادی) و ارتباط مستقیم با متغیر‌‌های اقلیت‌‌‌های مذهبی و سطح تحصیلات پایین (در ویژگی‌‌های اجتماعی)، جمعیت زیر خط‏فقر، تعداد کارگران ساده، تعداد شاغلین مرد و مالکیت استیجاری مسکن (در ویژگی‌‌های اقتصادی) و فاصله تا محور فعالیت، دسترسی به مراکز درمانی و فاصله به محدوده‌های پیرامونی شهر (در ویژگی‌‌های کالبدی) دارد. از سوی دیگر نتایج نشان داد که از نظر شمولیت، متغیر‌‌های اجتماعی و از نظر شدت، متغیر‌‌های اقتصادی بیشترین ارتباط را با تغییرات تعداد مسافران پس از کرونا دارند

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Analysis of Changes in Public Transport Passengers (City Buses) during the Corona Pandemic in Mashhad

نویسندگان [English]

  • Atefeh Nayebi Pour 1
  • Mostafa Amirfakhrian 2
  • Mohamad Rahim Rahnama 3
1 M.Sc. from Ferdowsi University of Mashhad
2 Assistant Professor of Ferdowsi University of Mashhad
3 Professor of Ferdowsi University of Mashhad
چکیده [English]

The present study seeks to provide a comprehensive analysis of the changes in the passengers of the city buses during the corona pandemic in Mashhad. The study method is descriptive-analytical, the research variables include 21 variables of social, economic characteristics and physical characteristics, and the study scale includes 3600 bus stations in 1200 statistical areas of Mashhad. The time period includes the data of the bus organization before the Corona outbreak (winter 2019 to winter 2020) and after it (March 2020 to September 2021). The techniques used include 1) classical statistical methods, such as "paired t", "correlation", and "regression", as well as 2) spatial analysis methods, such as "interpolation" and "Moran two-way spatial autocorrelation". The results indicate a significant difference in the number of the passengers in Mashhad. In 16.5% of the stations (602), the number of the passengers has increased significantly after the Corona and in 83.5% stations, it has decreased. Also, an inverse relationship was observed between the changes in the number of the station passengers with the variables of higher education, the number of elderly, housing ownership, average income, car ownership and female employees. Moreover, a direct relationship was observed with religious minority, low level of education, population below the poverty line, number of simple workers, number of male employees, rental ownership of housing, distance to the center of activity, access to medical centers, and distance from the informal settlement. The results showed that social variables in inclusion, and economic variables in severity were most related to the changes in the number of the passengers after the corona

کلیدواژه‌ها [English]

  • Bus stations
  • Corona pandemic
  • Mashhad
  • Spatial analysis
  1.  

     

    Abu-Rayash, A., & Dincer, I. (2020). Analysis of mobility trends during the COVID-19 coronavirus pandemic: Exploring the impacts on global aviation and travel in selected cities. Energy Research & Social Science 68.

    Amiri, p. (1398). The role of e-health at the beginning of the Corona crisis:         A systematic review of documentation. Health and Biomedicine Informatics Medical Informatics Research Center, 6 (4), 358-367. (In Persian)

    Almlöf, E., Rubensson, I., & Cebecauer, M. (2021). Who continued travelling by public transport during COVID-19? Socioeconomic factors explaining travel behaviour in Stockholm 2020 based on smart card data. European Transport Research Review, 13:31, 1-13. doi:10.1186/s12544-021-00488-0

    Antar A. AbouKorin, S., Han, H., & Gama, M. (2021). Role of urban planning characteristics in forming pandemic resilient cities – Case study of Covid-19 impacts on European cities within England, Germany and Italy. Cities, 118. doi:10.1016/j.cities.2021.103324

    Bian, Z., Zuo, F., Gao, J., Chen, Y., Chandra Pavuluri Venkata, S., Duran Bernardes, S., . . . Wang, J. (2021). Time lag effects of COVID-19 policies on transportation systems: A comparative study of New York City and Seattle. Transportation Research Part A: Policy and Practice 145, 269-283.

    Comprehensive guide to coronavirus. (1399, March). Treatment Center. RETRIEVED FROM

    HTTPS://WWW.DARMANKADE.COM/BLOG/CORONA-VIRUS/ (In Persian)

    De Vos, J. (2020). The effect of COVID-19 and subsequent social distancing on travel behavior. Trans. Res. Interdisciplinary Perspectives,5. doi:10.1016/j.trip.2020.100121

    Department for Transport U.K. (2020). Coronavirus (COVID-19): Safer travel guidance for passengers. Retrieved from

    https://www.gov.uk/guidance/coronavirus-covid19-safer-travel-guidance-for-passengers.

    Ezike, R., & Burrowes, K. (2021, August 12). Are Cars a Necessity? During COVID-19, Low-Income Households May Consider Public Transit Alternatives. Retrieved from https://housingmatters.urban.org

    Gianmarco, A., Gualini, A., Martini, G., Porta, F., & Scotti, D. (2021). The disruptive impact of COVID-19 on air transportation: An ITS econometric analysis. Research in Transportation Economics.

    Gosc´e, L., & Johansson, A. (2018). Analysing the link between public transport use and airborne transmission: Mobility and contagion in the London underground. Environmental Health, 17 (84). doi:10.1186/s12940-018-0427-5

    Gray, R. S. (2020). Agriculture, transportation, and the COVID‐19 crisis. Canadian Journal of Agricultural Economics 68 (2), 239-243.

    Guan, L., Prieur, C., Zhang, L., Prieur, C., Georges, D., & Bellemain, P. (2020). Transport effect of COVID-19 pandemic in France. Annual Reviews in Control 50, 394-408.

    Ho, S.-J., Xing, W., Wu, W., & Lee, C.-C. (2021). The impact of COVID-19 on freight transport: Evidence from China. MethodsX 8, 4.

    Hou, C., & Chen, J. (2020). The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID‐19): A well‐mixed SEIR model analysis. JOURNAL OF MEDICAL VIR, 841-848.

    Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., & Guo, Y. (2020). The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID‐19): A well‐mixed SEIR model analysis. ,JOURNAL OF MEDICAL.

    Hu, S., & Chen, P. (2021). Who left riding transit? Examining socioeconomic disparities in the impact of COVID-19 on ridership. Transportation Research Part D: Transport and Environment 90.

    Iio, K., Guo, X., Kong, X., Ree, K., & Bruce Wang, X. (2021). COVID-19 and social distancing: Disparities in mobility adaptation between income groups,. Transportation Research Interdisciplinary Perspectives,

    1. 10. doi:10.1016/j.trip.2021.100333

    Irji Rad, A. (2021). Evaluation of the psychological effects of Coronavirus in the staff of the Agricultural Research, Training and Extension Organization in an emergency. Educational Psychology of Allameh Tabatabai University, 16, 56, 229-237. (In Persian)

    Javid, M., Abdullah, M., Ali, N., & Dias, C. (2021). Structural equation modeling of public transport use with COVID-19 precautions: An extension of the norm activation model. Transportation Research Interdisciplinary  Perspectives, 12. doi:10.1016/j.trip.2021.100474(In Persian)

    Jenelius, E., & Cebecauer, M. (2020). Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts. Transportation Research Interdisciplinary Perspectives, 8, 1-8.

    Josephine Onyishi, C., UP Ejike-Alieji, A., & Kelechukwu Ajaero, C. (2020). COVID-19 Pandemic and Informal Urban Governance in Africa: A Political Economy Perspective. Asian and African Studies, 00 (0), 1-25. doi:10.1177/0021909620960163

    Komla Junior Dzisi, E., & Akunor Dei, O. (2020). Adherence to social distancing and wearing of masks within public transportation during the COVID 19 pandemic. Transportation Research Interdisciplinary Perspectives 7.

    Kutela, B., Novat, N., & Langa, N. (2021). Exploring geographical distribution of transportation research themes related to COVID-19 using text network approach. Sustainable Cities and Society, 739.

    Liu, L., Miller, H., & Scheff, J. (2020). The impacts of COVID-19 pandemic on public transit demand in the United States. PLoS ONE 15:11. doi:10.1371/journal.pone.0242476

    Mashhad Transport Statistics, (1400). Mashhad: Deputy of Supervision and Engineering of Transportation Network, Transportation and Traffic Organization of Mashhad Municipality. (In Persian)

    Mashhad Transport Statistics, (1397). Mashhad: Deputy of Supervision and Engineering of Transportation Network, Transportation and Traffic Organization of Mashhad Municipality. (In Persian)

    Mitręga, M., & Choi, T.-M. (2021). How small-and-medium transportation companies handle asymmetric customer relationships under COVID-19 pandemic: A multi-method study. Transportation Research Part E: Logistics and Transportation Review 148, 1- 7.

    Mogaji, E. (2020). Impact of COVID-19 on transportation in Lagos, Nigeria. Transportation Research Interdisciplinary Perspectives, 6, 1-7.

    Orro, A., Novales, M., Monteagudo, A., Perez-Lopez, J.-B., & Bugarin, M. (2020). Impact on City Bus Transit Services of the COVID–19 Lockdown and Return to the New Normal: The Case of A Coruña (Spain). Sustainability 12 (17), 1-30.

    Qasemi, A. (1399). Implications of Corona on the city and future urban development. Journal of Social Impact Assessment, 2, 227-253. (In Persian)

    Raj, S., Angella , E., & Pooja , C. (2021). Impact of Covid-19 in shaping new resilient urban planning approach. Materials Science and Engineering. Orlando: IOP. doi:10.1088/1757-899X/1114/1/012040

    Rajabi Nejad, M. (1399). The Impact of the Quid 19 Epidemic on the Transportation Industry. Tehran: Deputy of Economic Studies of Tehran Municipality. (In Persian)

    Shahnoshi, N. (2007). Determining the level of development of Mashhad city areas. Urban Planning and Management Conference. Mashhad: Mashhad municipality(In Persian).

    Shakibaei, S., de Jong, G., Alpkökin, P., & Rashidi, T. (2021). Impact of the COVID-19 pandemic on travel behavior in Istanbul: A panel data analysis. Sustainable Cities and Society 65. (In Persian)

    Simaii saraf, H. (2021). Corona legal and jurisprudential norms; Principles of legitimacy of norms and norm makers . Legal Research Quarterly - Special Issue on Law and Corona. (In Persian)

    The World Bank. (2021). Influence of COVID-19 on China’s Urban Planning and Design Regulations. China: The World Bank.

    Turani, H. (2021). Post-program in post-corona, the necessity of education today: based on strategic radar model. Educational Psychology of Allameh Tabatabai University, 16, 56, 105-117. (In Persian)

     

     

     

    UNESCO CITIES PLATFORM. (2020). URBAN SOLUTIONS:LEARNING FROMCITIES’ RESPONSESTO COVID-19. UNESCO .

    Walker, R. (2021 , January 29). People in deprived areas 3 times more likely to use public transport for essential travel . Retrieved from

    https://www.ucl.ac.uk/news/2021/jan

    Wilbur, M., Ayman, A., Ouyang, A., Poon, V., & Kabir, R. (2020). Impact of COVID-19 on Public Transit Accessibility and Ridership. arXiv:2008.02413v1.

    Yanga, S., & Chongb, Z. (2021). Smart city projects against COVID-19: Quantitative evidence from China. Sustainable Cities and Society, 70.

    Zhang, Y., & Fricker, J. (2021). Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model. Transport Policy 103, 11-20.